Name	
Signature	SECTION
P525/1	
CHEMISTRY	
Paper 1	
2 ³ / ₄ hours.	

CHEMISTRY PAPER 1

2 hours 45 minutes.

INSTRUCTIONS TO STUDENTS

- Answer ALL questions in Section A and Six questions from Section B.
- All questions must be answered by writing clearly your answers and workings in the spaces provided.
- Silent non-programmable scientific electronic calculators may be used.
- The Periodic Table with relative atomic masses and atomic numbers of different elements is attached at the end of the booklet.
- Illustrate your answers with equations were applicable.
- Molar gas constant, R, = 8.31 Jkg⁻¹mol⁻¹.
- Molar gas volume at s.t.p is 22.4 litres.

FOR EXAMINER'S USE ONLY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

Attempt all questions in this section

1.	Complete the following equations for nuclear reactions.	
	(a) $^{239}_{94}$ Pu + $^{4}_{2}$ He \longrightarrow $\cdots \cdots \cdots + ^{27}_{13}$ Al	(1 mark)
	(b) $\cdots \cdots \rightarrow {}^{234}_{90}\text{Th} + \alpha$	(1 mark)
	(c) $^{214}_{83}$ Bi \rightarrow $^{206}_{82}$ Pb + $\cdots \cdots + 2^{4}_{2}$ He	(1 mark)
	(d) $^{250}_{98}$ Cf +	(1 mark)
2.	Complete the equation and write the mechanism for the reaction CH ₃ CHO + NaHSO ₃	
		······································
3.	State what would be observed and write equation(s) for the that would take place when to a solution of cobalt(II) chloride	is added,
	(a) aqueous sodium hydroxide drop-wise until in excess.	(3 ½ marks)
	Observation	

	Equatio	on(s)	
(b)		ntrated hydrochloric acid	(2½ marks)
••••	Obser	vation	
	Equation	on(s)	
4.	cooling residua	$10 \mathrm{cm^3}$ of a hydrocarbon P $\left(\mathbf{C_x H_y}\right)$ was exploded in to room temperature, the residual gases occurs gases were passed through potassium hydroxidal to $40 \mathrm{cm^3}$.	upied 70cm³, when the
	(i)	Write the equation for the reaction between 1	P and oxygen (1 marks)
	(ii) 	Determine the molecular formula of P	(3 marks)

(b) W	rite equations to show how P can be prepared from pro	pan-2-ol <i>(2 mar</i>
 (a)	2.0g of phosphorus raises the boiling point of 37.4g of	carbon disulphi
•	.003 $^{\circ}$ C, whereas 4.65g of Sulphur raises the boiling poison disulphide by 0.42 $^{\circ}$ C.	nt of 100g of
(i)	Calculate the boiling point constant for carbon disulp	hide
	(molar mass of Sulphur is 256)	(3 marks
(ii)	Molar mass of phosphorus in carbon disulphide.	(2 marks

	(b) Determine the molecular formula of phosphorus.	(1 marks)
6.	Methane reacts with steam according to the following equation:	
	$CH_{4(g)} + 2H_2O_{(l)} \longrightarrow CO_{2(g)} + 4H_{2(g)}\Delta H_r = ?$	
	The enthalpy of formation of methane, water, and carbon dioxide of	are
	$-76, -242, $ and $-394kJmol^{-1}$	
	$C_{(s)} + 2H_{2(g)} \longrightarrow CH_{4(g)} \Delta H_{f} = -76 \text{Kjmol}^{-1}$	
	$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(g)} \Delta H_f = -242 \text{ Kjmol}^{-1}$	
	$C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H_{f} = -394 \text{ Kjmol}^{-1}$	
	(a) Calculate the enthalpy of reaction	
	$CH_{4(g)} + 2H_2O_{(l)} \longrightarrow CO_{2(g)} + 4H_{2(g)}$ (3 mag)	arks)
	(b) State whether the reaction above is feasible, give a reason for	vour answer
	(b) State whether the reaction above is reasible, give a reason for	(1 mark)

7. (a) When red lead, Pb ₃ O ₄ was reacted with nitri Write the equation for the reaction.	ic acid a solid was formed (1½ marks)
b) The mixture from (a) was filtered and residue w	warmed with concentrated
(i) Sate what was observed	(3marks)
(ii) Eyplein your enguen in h(i)	
(ii) Explain your answer in b(i)	
(iii) Write equation for the reaction	(1½ marks)
8. (a) (i)State the conditions for the reaction betweer acid.	n Benzene and Sulphuric (1 mark)
(ii) Outline the mechanism for the reaction in a((i) (2 marks)

	(b) Write equation(s) to show how the product in a(ii) can be conv	verted to
	hydroxybenzene.	(2 marks)
9.	When a current of 6A was passed through copper (II) sulphate platinum electrodes, 7.5g of copper were deposited.	solution using
	(a) Write equation for the reaction that took place at the (i) anode	(01 mark)
	(ii) Cathode	(01 mark)
(b) Calculate time taken for the copper to be deposited. (IF =	96500C) (03 marks)
•••		

SECTION B (54 MARKS)

Attempt any six questions from this section

10.	(a) (i)	Silver ethanedioate is sparingly soluble in wate equation for the solubility of silver ethanedioa					
•••••	(ii)	the expression for the solubility product, K_{sp} o	f silver				
		ethanedioate.	(½ mark)				
(b)	The solubility product, Ksp , of silver ethanedioate is 5.3×10^{-12} mol ³ /at $25^{\circ}C$. Calculate the concentration of the following ions in a saturated solution of silver ethanedioate.						
	(i)	Silver ions. (2½ marks)				
	(ii)	Ethanedioate ions	(½ mark)				
(c)	satu	ulate the mass of silver nitrate should be added rated solution in (b) in order to reduce the conc anedioate ions to a fifth of its original value. (entration of the				

•••		
••		
•••		
•••		
	1)	
(0	d) Sodium ethanedioate solution was added to the solution in how the concentration of the silver ions was affected and reason for your answer.	• •
R	leason	••••••
•••		
•••		
	te what would be observed and write the equation for the readed take place when;	ction that
(a)	Potassium iodide solution is added to copper(II) sulphate solu	ition. (02 marks)
C	Observation	

Equation	
Observation	(02 marks)
Equation c) sodium nitrite is added to acidified potassiun	n managnate(VII) solution
(b) Manganese(IV) oxide is heated with excess Posterior(b) Manganese(IV) oxide is heated with excess Posterior(c) Observation	otassium hydroxide in (2½marks)
Equation	

Equation	
12. Name one reagent that can be used to distinguish of compounds. In each case state what would be the pair is treated with the reagent you have named as a constant of the c	observed if each member of
(a) $CH_3C \equiv CCH_3$ and $CH_3CH_2C \equiv CH$ Reagent	(1 mark)
Observations.	(2 marks)
(b) C_6H_5COOH and C_6H_5OH Reagent	(03 mark)
Observation	
(c) CH ₃ COONa and COONa	
ĊOONa	,,
Reagent	(1 mark)

Observations.		(2 mark
	ydrolysis of 2 - bromo - 2 roxide is shown in the tabl	
Concentration of (CH ₃) ₃ Br / mol dm ⁻³	Concentration of OH- ions mol dm ⁻³	Rate of hydrolysis / mol dm ⁻³ S ⁻¹
0.100	0.500	0.0020
0.100	0.250	0.0020
0.050	0.250	0.0010
0.250025	0.250	0.0005
(a) Deduce the or (i) 2 - bromo - 2 - me	der of reaction with respe thyl propane	ect to: (01 mark)
(ii) The hydroxide ion		(01 mark)

(b) 	Write the rate equation	on for the	reaction	(01	mark)
 (c)	Draw the energy diagro	ım for the	reaction	(03	marks)
d)	Write a mechanism for	the reacti	on	(03	marks)
14 V	Vrite equations to show ho	nw the follow	wing compounds can	he synthesize	d and in
	each case state the conditi			de symmesize	a una m
(a)	$CH = CH_2$	from	C ₆ H ₅ COCH ₃	(3 m	arks)

(b)	SO_3H from COOH	(3 marks)
(c) CH_3COCH_3 from $CH_3CH = CH_2$	(3 marks)

15. The table below shows the atomic radius and first ionisation energy of some elements in period 3 of the periodic table.

Element	Na	Mg	Al	Si	Р	5	Cl
Atomic radius	0.186	0.160	0.143	0.117	0.110	0.104	0.099
First ionization energy	496	738	577	787	1060	1000	1251
(kJmol ⁻¹)							

(i) State how atomic radius of the elements varies across the	period.
	(1 mark)
(ii) Explain your answer in a(i)	(3 marks
(i) Explain how atomic radius affects the ionization energy.	(2 marks
(ii) Why the first ionisation energy of aluminium is lower than	that of
magnesium.	(3 marks

for the reaction.	
(a) $CH_3CH_2C \equiv CH$	(3 marks)
(b) $\frac{\text{Conc. H}_2\text{SO}_4, \text{Conc. HNO}_3}{60^{\circ}\text{C}}$	$(2\frac{1}{2}$ marks)
(c) $(CH_3)_3CBr \xrightarrow{NaOH/Ethanol}$	

nitrogen.		(3 marks)
OXY ANION	STRUCTURE	SHAPE
NO ₂		
NO ₃		
b. (i) Name the red	agent(s) that can be used to	distinguish between the oxy
anions in (a).		(1½ marks)
(ii) State what	t would observed if a solutic	on of each oxy anions is
separately	treated with the regent (s)	you have named in b(i).
		(2 marks)

17.(a) Draw the structure and name of the shape of the following oxy anions of

(iii) Write three equation(s) if any reactions(s) that would ta	ke place
when a solution of each oxy anions is treated separately with t	he
reagents(s) you have named in b(i).	$(1\frac{1}{2}$ marks)
	······

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0																1.0	4.0
Н															Н	He	
1																1	2
6.9	9.0											10.8	12.0	14.0	16.0	19.0	20.2
Li	Be		B C N O													F	Ne
3	4											5	6	7	8	9	10
23.0	24.3											27.0	28.1	31.0	32.1	35.4	40.0
Na	Mg											Αl	Si	Р	5	Cl	Ar
11	12											13	14	15	16	17	18
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
Κ	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.5	87.6	88.9	91.2	92.9	95.9	98.9	101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	У	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	209	210	222
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
223	226	227		l													
Fr	Ra	Ac															
87	88	89															
			139	140	141	144	145	150	152	157	159	162	165	167	169	173	175
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Уb	Lu
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			227	232	231	238	237	244	243	247	247	251	254	257	256	254	260
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	M٧	No	Lw
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

END